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Reliability

Definition: Reliability refers to the ability of a component or a system to 

perform its required functions under stated operating conditions for a 

specified period of time.

Four basic problems: Reliability metric, analysis, design and verification

Analysis

Verification

How to describe 

uncertainty? Metric
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Uncertainty

Classification: Aleatory uncertainty  &  Epistemic uncertainty

Aleatory uncertainty Epistemic uncertainty

Inherent randomness of

the physical world and can

not be eliminated. This

kind of uncertainty is also

called random uncertainty.

Uncertainty due to lack of

knowledge. It can be

reduced through scientific

and engineering practices.

[1] Kiureghian, Armen Der, and O. Ditlevsen. Aleatory or epistemic? Does it matter?. Structural Safety 31.2(2009): 105-112.
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Source of epistemic uncertainty

Example - Software

Users

Developers

Complex 

requirements

Scheme & 

proposals

Programmers Code

Epistemic 

uncertainty

Epistemic 

uncertainty
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Probability theory

Probability Theory（Kolmogorov,1933）

Axiom1. Normality Axiom: For the universal set Ω, Pr Ω = 1.

Axiom2. Nonnegativity Axiom: For any event 𝐴, Pr 𝐴 ≥ 0.

Axiom3. Additivity Axiom: For every countable sequence of mutually disjoint

events {𝐴𝑖}, we have

Pr ⋃
𝑘=1

∞

𝐴𝑖 = ∑
𝑘=1

∞

Pr 𝐴𝑖 .

Product Probability Theorem: For any probability space Ω𝑘 , 𝒜𝑘 , Pr𝑘 , 𝑘 = 1,2, … ,

Pr ∏
𝑘=1

∞

𝐴𝑘 = ∏
𝑘=1

∞

Pr𝑘 𝐴𝑘 .

where 𝐴𝑘 are arbitrarily chosen events from 𝒜𝑘 , 𝑘 = 1,2, …

Probability measure
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Probability theory

The law of large numbers

J. Bernoulli P. Chebyshev A. Kolmogorov

Bernoulli’s Law of Large Numbers（Bernoulli,1713）

Let 𝜇 be the occurrence times of event 𝐴 in 𝑛 independent experiments. If the

probability that event 𝐴 occurs in each test is 𝑝, then for any positive number 𝜀:

lim
𝑛→∞

Pr |
𝜇

𝑛
− 𝑝| < 𝜀 = 1.
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Classical probabilistic reliability metric

At the very beginning…

• Probability theory is used to represent uncertainty

• In World War II, German rocket scientist Robert Lusser advocated 

the probability product rule

R. Lusser (1899-1969)

System reliability is the product of 

the reliability of each subsystem.
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×

×
×

×

Failure time data Frequency 
Probability 

density function

Reliability 

function

• Features：The reliability is calculated using statistical methods

This method doesn’t separate aleatory and epistemic uncertainty

• Shortage：We must collect enough failure time data

It is hard to indicate how to improve reliability

[1] W. Q. Meeker and L. Escobar, Statistical methods for reliability data. New York: Wiley, 1998.

Classical probabilistic reliability metric

Black box method: Probabilistic metric based on failure data
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A PoF model is a mathematical model that quantifies the relationship 

between failure time or performance and product’s features, such as material, 

structure, load, stress, etc. It is developed for one specific failure mechanism 

based on physics and chemistry theories.

Classical probabilistic reliability metric

White box method: Probabilistic metric based on physics of failure

◼ Physics-of-failure models (PoF models)

◼ A simple example – Archard’s model (wear life model)

𝑁 =
ℎ𝑠𝐻𝐴

𝜇𝑊𝑎𝐿𝑚

Failure time

Structure

Load

Material

Threshold

𝑁：Wearing times

𝐻：Hardness

𝜇：Dynamic friction coefficient

𝐴：Contact area of two wear surfaces

𝑊𝑎：Contact pressure

ℎ𝑠：The max acceptable wear volume
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Variability of the 

model parameters
PoF model Probability 

density function

Reliability 

function

𝑇𝐹 = 𝑓(𝑥1, 𝑥2, … )

[1] M. JW, Reliability physics and engineering: Time-to-failure modeling, 2nd ed. New York: Springer, 2013.

Classical probabilistic reliability metric

White box method: Probabilistic metric based on physics of failure

• Features：The failure is described by a deterministic model

The uncertainty only comes from the variability of model parameters

This method is able to measure reliability when there’s few data

The results can guide design improvements

• Shortage：The method may overestimate the reliability by ignoring epistemic uncertainty
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[1] T. Aven and E. Zio, Model output uncertainty in risk assessment, Int. J. Perform. Eng., 9(5):475-486, 2013.

[2] T. Bjerga, T. Aven and E. Zio, An illustration of the use of an approach for treating model uncertainties in risk assessment, Rel. 

Eng. Syst. Safety, 125:46-53, 2014.

PoF model

𝑇𝐹 = 𝑓(𝑥1, 𝑥2, … )

Lack of knowledge

about the product

function and failure

mechanism

Functional 

principle

Reliability metric considering epistemic uncertainty

Classical probabilistic reliability metric

White box method: Source of epistemic uncertainty

Failure 

mechanism

Variability of parameters

Lack of knowledge

about the product

working conditions

Model 

uncertainty

Parameter 

uncertainty



16

Imprecise probabilistic reliability metric

Bayes theory        — Bayesian reliability

Evidence theory   — Evidence reliability

Interval analysis   — Interval reliability

Reliability metric considering EU

Fuzzy reliability metric

Fuzzy theory   — Fuzzy reliability
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Imprecise probabilistic reliability metric

Bayes theory        — Bayesian reliability

Evidence theory   — Evidence reliability

Interval analysis   — Interval reliability

Reliability metric considering EU

Posbist reliability metric

Possibility theory   — Posbist reliability



18[1] MS. Hamada, AG. Wilson, CS. Reese and HG. Martz, Bayesian Reliability, Spinger, 2008.

Reliability metric considering EU

Imprecise probabilistic metric: Bayesian reliability

◼ Theoretical basis – Bayes theorem

𝒑 𝜽|𝒚 =
𝒇 𝒚|𝜽 𝒑 𝜽

𝒎 𝒚

Likelihood Function Prior Distribution Function

（Subjective Information）

Posterior Distribution Function Sampling density function

◼ How to consider EU?

Our knowledge on the failure process is reflected in the different forms of 

prior distribution. 
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𝑓𝑇(𝑡|𝜽):  pdf of failure 

time T

𝑝(𝜽): prior distribution 

of  parameter 𝜽

𝒕 : some failure time

data

+

+ 𝜃𝒊

pdf ------ prior

—— posterior

𝑝(𝜽|𝑡): posterior 

distribution of 𝜽

𝑅 𝑡 = 𝑡׬
∞
𝑓𝑇 𝜉|𝜽 𝑑𝜉

𝑡

𝑅𝑚(𝑡)

Use the median reliability 

𝑅𝑚 𝑡 as the reliability index

[1] MS. Hamada, AG. Wilson, CS. Reese and HG. Martz, Bayesian Reliability, Spinger, 2008.

Reliability metric considering EU

Imprecise probabilistic metric: Bayesian reliability

◼ Method to obtain reliability
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Reliability metric considering EU

Imprecise probabilistic metric: Evidence reliability

◼ Theoretical basis – Evidence theory

• Proposed by A. Dempster and G. Shafer and refined by Shafer.

• Use evidence to calculate Belief and Plausibility → Probability interval

𝐵𝑒𝑙：measures the evidence that supports 𝐴
𝑃𝑙：measures the evidence that refutes 𝐴

Fig. Belief and Plausibility
𝐵𝑒𝑙(𝐴) ≤ 𝑃(𝐴) ≤ 𝑃𝑙(𝐴)

◼ How to consider EU?

[1] G. Shafer, A mathematical theory of evidence, Princeton: Princeton University Press, 1976.

Experts may set basic probability assignment (BPA) to different values of the 

model parameters based on experience or similar product information, reflecting 

the belief degree of the corresponding values.
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Construct a performance model

𝑦 = 𝑔(𝑥1, 𝑥2, … )

Identify the failure region {𝑦 < 𝑦𝑡ℎ}
Event 𝐴: system is working

Define the frame of discernment 

and assign BPAs to possible 

values of parameters

Calculate probability interval 

𝐵𝑒𝑙 𝐴 , 𝑃𝑙(𝐴)

Θ = { 𝟐, 𝟒 × [𝟐, 𝟒]}

𝑥1

Intervals BPA

𝑥2

Intervals BPA

[2.0, 2.5] 0.0478 [2.0, 2.5] 0.0478

[2.5, 3.0] 0.4522 [2.5, 3.0] 0.4522

[3.0, 3.5] 0.4522 [3.0, 3.5] 0.4522

[3.5, 4.0] 0.0478 [3.5, 4.0] 0.0478

For example, 𝑦 represents output 

voltage and 𝑦 = 𝑔 𝑥1, 𝑥2 = Τ𝑥1
2𝑥2 20

Let 𝑦𝑡ℎ = 1𝑉, then 𝐴 ={y ≥ 1𝑉}

denotes working state

0.5 ≤ 𝑃(𝐴) ≤ 0.976

Reliability metric considering EU

Imprecise probabilistic metric: Evidence reliability

◼ Method to obtain reliability
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Reliability metric considering EU

Imprecise probabilistic metric: Interval reliability

◼ Theoretical basis – Interval analysis

• Proposed by Ramon E. Moore.

• Calculate the interval of model output based on intervals of input parameters

Input parameter

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

Model

𝑦 = 𝑓(𝑥)
Model output

𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝑈

Interval algorithm or optimization algorithm

◼ How to consider EU?

[1] RE. Moore, Methods and applications of interval analysis. Philadelphia: Siam, 1979.

The expert may give the upper and lower bounds of the model parameters based 

on experience or similar product information. Parameters can take any values within 

the given interval. The width of the interval reflects the degree of epistemic uncertainty.
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Reliability metric considering EU

Imprecise probabilistic metric: Interval reliability

◼ Method to obtain reliability

Construct a 

performance model

𝑦 = 𝑓(𝑥1, 𝑥2, … )

The upper and lower 

bounds of distributions 

are given by experts

𝜇𝑖𝐿, 𝜇𝑖𝑈 , 𝜎𝑖𝐿, 𝜎𝑖𝑈 , …

+

𝒚

)𝐹𝑌(𝑦

Construct a p-box of 𝑦

Algorithm：
Cartesian product method[1]

Optimization method[2]

𝑝 = 𝑃 𝑦 ≤ 𝑦𝑡ℎ = 𝐹𝑌(𝑦𝑡ℎ)
Then we have 𝒑𝑳, 𝒑𝑼

and 𝑹𝑳, 𝑹𝑼

[1] DR. Karanki, HS. Kushwaha, AK. Verma et al. , Uncertainty analysis based on probability bounds (P-Box) approach in probabilistic 

safety assessment, Risk Analysis, 2009, 29(5): 662-675.

[2] H. Zhang, RL. Mullen, RL. Muhanna, Interval Monte Carlo methods for structural reliability, Structural Safety, 2010, 32(3): 183-190.
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Reliability metric considering EU

Shortages of Imprecise probabilistic metric

◼ Interval extension problem

Example

Consider a series system composed of 30 components. Suppose that the reliability

interval for each component is 0.9,1 . Then, the system’s reliability metric will be

0.930, 130 = [0.04,1] ,which is obviously too wide to provide any valuable information in

practical applications.

···

30 Independent Components

◼ Disconnection between macro and micro

The metrics doesn’t show the relationship between reliability and product design 

parameters. Therefore, their abilities to guide the improvement of products are very 

limited.
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Imprecise probabilistic reliability metric

Bayes theory        — Bayesian reliability

Evidence theory   — Evidence reliability

Interval analysis   — Interval reliability

Fuzzy set theory  — Fuzzy interval reliability

Reliability metric considering EU

Posbist reliability metric

Possibility theory   — Posbist reliability



26[1] L.A. Zadeh, Fuzzy sets, Information and Control, 1965, 8: 338-353.

Possibility theory（Zadeh,1978）

In possibility theory, the possibility measure 𝛱 satisfies three axioms:

Axiom1.  For the empty set ∅， 𝛱 ∅ = 0,

Axiom2. For the universal set Γ， 𝛱 Γ = 1,

Axiom3. For any events 𝛬1 and 𝛬2 in the universal set Γ, there is

𝛱 𝛬1 ∪ 𝛬2 = max(𝛱 𝛬1 , 𝛱(𝛬2))

Reliability metric considering EU

Posbist reliability metric

◼ Theoretical basis – Possibility theory
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Reliability metric considering EU

Fuzzy reliability metric 

Mathematical measure System state

PRObability

measure

POSsibility

measure

BInary

STate

FUzzy

STate

Probist

reliability

Profust

reliability

Posbist

reliability

Posfust

reliability

[1] Kaiyuan Cai, Introduction to fuzzy reliability, Spinger, 1991.
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Reliability metric considering EU

Posbist reliability metric 

◼ Basic assumption

• Possibility assumption

System failure behavior can be characterized under possibility 

• Binary-state assumption

The system demonstrates only two crisp states: functioning or failed

◼ Definition

Posbist Reliability（Cai , 1991）
Suppose the system failure time 𝑇 is a fuzzy variable. Then the posbist

reliability at time 𝑡 is defined as the possibility measure that 𝑇 is greater than 𝑡: 

𝑅 𝑡 = 𝛱 𝑇 ≥ 𝑡

[1] Kaiyuan Cai, Introduction to fuzzy reliability, Spinger, 1991.

◼ How to consider EU?

The failure time is modeled as a fuzzy variable, and the possibility distribution of failure time 

describes the epistemic uncertainty. 
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[1] Rui Kang, Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, Xiaoyang Li. “Measuring reliability under epistemic uncertainty: Review on 

non-probabilistic reliability metrics ”. Chinese Journal of Aeronautics 29(3):571-579, 2016.

Example

Consider two exclusive events: 𝛬1 ={The system is working}，𝛬2 ={The 

system fails}. Obviously, the universal set Γ = 𝛬1, 𝛬2 . Then, we have the 

posbist reliability and posbist unreliability to be 𝑅𝑝𝑜𝑠 = 𝛱 𝛬1 and𝑅𝑝𝑜𝑠 = 𝛱 𝛬2 .

According to Axiom 2 and Axiom 3, it can be proved that：

𝜫 𝜞 = 𝜫 𝜦𝟏 ∪ 𝜦𝟐 = 𝐦𝐚𝐱 𝜫 𝜦𝟏 , 𝜫 𝜦𝟐 = 𝐦𝐚𝐱 𝑹𝒑𝒐𝒔, 𝑹𝒑𝒐𝒔 = 𝟏

Therefore, if 𝑅𝑝𝑜𝑠 = 0.8, then 𝑅𝑝𝑜𝑠 = 1, and if 𝑅𝑝𝑜𝑠 = 0.8, then 𝑅𝑝𝑜𝑠 = 1. This 

result is counterintuitive.

Reliability metric considering EU

Shortages of posbist reliability metric

◼ Non-duality
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[1] Rui Kang, Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, Xiaoyang Li. “Measuring reliability under epistemic uncertainty: Review on 

non-probabilistic reliability metrics ”. Chinese Journal of Aeronautics 29(3):571-579, 2016.

Requirements for reliability metric

Normality

A reliability metric must satisfy the normality

principle, i.e., the sum of measurement of all states

should be equal to 1. Specially, reliability plus

unreliability must be 1.

This is mathematically consistent, also

logically consistent. It can avoid the bug of fuzzy

reliability.
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[1] Rui Kang, Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, Xiaoyang Li. “Measuring reliability under epistemic uncertainty: Review on 

non-probabilistic reliability metrics ”. Chinese Journal of Aeronautics 29(3):571-579, 2016.

Requirements for reliability metric

Slow decrease

A reliability metric should be able to be used

not only for the reliability evaluation of components

and simple systems, but also for that of complex

systems. When it is used for reliability calculation

of the system, it cannot decrease as quickly as

interval-based method, i.e., it should be able to

compensate the conservatism in the component

level.
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[1] Rui Kang, Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, Xiaoyang Li. “Measuring reliability under epistemic uncertainty: Review on 

non-probabilistic reliability metrics ”. Chinese Journal of Aeronautics 29(3):571-579, 2016.

Requirements for reliability metric

Multiscale analysis

A reliability metric must enable multiscale

analysis. The bridge between reliability metric and

product or system design elements can be

established through multiscale analysis. This can

provide more feedback on improving product or

system reliability and avoids the embarrassment in

statistical methods because statistical methods only

give the results but don't know why.
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[1] Rui Kang, Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, Xiaoyang Li. “Measuring reliability under epistemic uncertainty: Review on 

non-probabilistic reliability metrics ”. Chinese Journal of Aeronautics 29(3):571-579, 2016.

Requirements for reliability metric

Uncertain 

information fusion

A reliability metric should be able to support

the uncertain information fusion. The reliability

information is available early in the design phase of

a product. At this time, the degree of epistemic

uncertainty is very high. As the design process

advances, epistemic uncertainty will gradually

decrease with a relative increase of aleatory

uncertainty. The reliability metric must be able to

integrate these different information.
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Requirements for reliability metric

Theoretical 

Completeness

R1: Normality

R2: Slow decrease

Engineering 

Practicability

R3: Multiscale analysis

R4: Information fusion

Belief reliability theory
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Preliminary about math theory



Belief reliability metric

Theoretical basis: Uncertainty theory

Uncertainty Theory（Liu,2007）

In uncertainty theory, the uncertainty measure ℳ satisfies the following 4 axioms:

Axiom1. Normality axiom: For the universal set Γ, ℳ Γ = 1.

Axiom2. Duality axiom: For any event 𝛬, ℳ 𝛬 +ℳ 𝛬𝑐 = 1.

Axiom3. Subadditivity axiom: For every countable sequence of events 𝛬1, 𝛬2, …，

ℳ ⋃
𝑘=1

∞

𝛬𝑖 ≤ ∑
𝑘=1

∞

ℳ 𝛬𝑖 .

Axiom4. Product axiom: For any uncertainty space 𝛤𝑘 , ℒ𝑘,ℳ𝑘 , 𝑘 = 1,2, … ,

ℳ ∏
𝑘=1

∞

𝛬𝑘 = ⋀
𝑘=1

∞

ℳ𝑘 𝛬𝑘 .

where 𝛬𝑘 are arbitrarily chosen events from ℒ𝑘, 𝑘 = 1,2, …

[1] Baoding Liu. Uncertainty theory., Spinger-Verlag, 2007.
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General theoretical basis

Chance theory

Chance theory（Liu, 2013）

Chance theory defines chance measure Ch, which

can be regarded as a mixture of probability measure

and uncertainty measure.

Let 𝛤, ℒ,ℳ )× (𝛺,𝒜, Pr be a chance space, and

𝛩 ∈ ℒ ×𝒜 is an event over this space. Then, the chance

measure of 𝛩 is defined to be：

Ch{𝛩} = න
0

1

Pr {𝜔 ∈ 𝛺|ℳ{𝛾 ∈ 𝛤|(𝛾, 𝜔) ∈ 𝛺} ≥ 𝑥}𝑑𝑥

[1] Yuhan Liu. Uncertain random variables: a mixture of uncertainty and randomness. Soft Computing, 4(17): 625-634, 2013.
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Chance theory

Chance measure（Liu, 2013）

Let 𝛤, ℒ,ℳ )× (𝛺,𝒜, Pr be a chance space, and

𝛩 ∈ ℒ ×𝒜 is an event over this space. Then, the

chance measure of 𝛩 is defined to be：

Ch{𝛩} = න
0

1

Pr {𝜔 ∈ 𝛺|ℳ{𝛾 ∈ 𝛤|(𝛾, 𝜔) ∈ 𝛺} ≥ 𝑥}𝑑𝑥

[1] Yuhan Liu. Uncertain random variables: a mixture of uncertainty and randomness. Soft Computing, 4(17): 625-634, 2013.

Theorem

Let 𝛤, ℒ,ℳ )× (𝛺,𝒜, Pr be a chance space, then for any Λ ∈ ℒ and A ∈ 𝒜：

}Ch{𝛬 × 𝐴} = ℳ{𝛬} × Pr{𝐴 . 

Especially we have Ch{∅} = 0, Ch{𝛤 × 𝛺} = 1.

ℳ{Θ𝜛}
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Definition（Uncertain random variable）

An uncertain random variable is a function 𝜉 from a chance space 𝛤, ℒ,ℳ

)× (𝛺,𝒜, Pr to the set of real numbers such that 𝜉 ∈ 𝐵 is an event in ℒ ×𝒜 for

any Borel set 𝐵 of real numbers.

𝛤 × 𝛺

ℜ

)𝜉(𝛾, 𝜔

• 𝜉 can degenerate to a random

variable if )𝜉(𝛾, 𝜔 does not vary

with 𝛾.

• 𝜉 can degenerate to an uncertain

variable if )𝜉(𝛾, 𝜔 does not vary

with 𝜔.

Chance theory
Basic concepts and theorems
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Definition（Chance distribution）

Let 𝜉 be an uncertain random variable, then its chance distribution is defined by

}𝛷(𝑥) = Ch{𝜉 ≤ 𝑥

for any 𝑥 ∈ ℜ. It can also degenerate to either probability or uncertainty distribution.

Definition（Expected value and variance）

Let 𝜉 be an uncertain random variable, then its expected value is defined by

𝐸 𝜉 = න
0

+∞

Ch 𝜉 ≥ 𝑥 𝑑𝑥 − න
−∞

0

Ch 𝜉 ≤ 𝑥 𝑑𝑥 ,

provided that at least one of the two integrals is finite. Suppose 𝜉 has an finite

expected value 𝑒, the variance of 𝜉 is defined as

]𝑉[𝜉] = 𝐸[ 𝜉 − 𝑒 2 .

Chance theory
Basic concepts and theorems
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Concepts and definitions of 

belief reliability



Real systems are usually uncertain random systems! 
44

Uncertain random systems

Random components Uncertain components

Definition: The system composed of uncertain and random components

• Uncertain components: Components affected by sever epistemic uncertainty. 

Their reliability can be described by uncertainty theory.

• Random components: Components mainly affected by aleatory uncertainty with 

sufficient failure data. Their reliability should be modeled by probability theory.
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Belief reliability analysis of cloud data center

FW1

GTM1 CSW1

SW1

SAN1K

SLB1

AS11J1

OTV

OTV

OTV

Site I

SVC11

AM111 AM112

AS11JNs1J 

 

DM111 DM112

ST11

Serv
ers

O
n

-d
em

an
d

 
acce

ss

AM11Nm1

DS11J2DS11J1

AS1KJ1

AM1K1 AM1K2

AS1KJNsKJ 

 

DM1K1 DM1K2

AM1KNmK

DS1KJ2DS1KJ1

 Cluster 1 Cluster K

Sto
ra

ge

FW2

CSW2

SW2

SAN21

AS21J1

AM211 AM212

AS21JNs1J 

 

DM212

ST21

AM21NAm

1

DS21J2DS21J1

AS2KJ1

AM2k1 AM2k2

AS2KJNsKJ 

 

DM2K1 DM2K2

AM2kNAm

k

DS2KJ2DS2KJ1

 Cluster 1 Cluster K

DM211

Site II

SVC2K

GTM2

SLB2

AS1111 AS111Ns11 

DS1112DS1111

AS1K11 AS1K1NsK1 

DS1K12DS1K11

AS2111 AS211Ns11 

DS2112DS2111

AS2K11 AS2K1NsK1 

DS2K12DS2K11

Sub-Cluster 1 Sub-Cluster J Sub-Cluster 1 Sub-Cluster J Sub-Cluster 1 Sub-Cluster 1Sub-Cluster J Sub-Cluster J

ST12 ST22

SAN11 SAN2K

SVC1K SVC21

    

  



46

Parameter Setting - Certain Parameters

Parameters Setting

Function of Protocol and Routing Rules FPR

According to the construction

Number of Clusters and Sub-Clusters K, J

Number of Subtasks YkA1, YkA1, YkD

Number of VMs for Each Physical Machine NVM

Number of Active Redundancy for Each Node NR

Number of Hot Standby for Each Node NHS

Parameters Related to the Design of CDC

Belief reliability analysis of cloud data center
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Parameters Setting Uncertainty

Working Probability pr
Evaluated through monitoring data

Aleatory 
Uncertainty

Distribution Parameter of 
Processing Time λs

Buffer Size Q Estimated by experts Epistemic 
UncertaintyRecovery Time Δtr

Distribution Parameter of 
Arrival Time λak

Evaluated through monitoring data

Aleatory 
Uncertainty

Parameters Related to the Operation and Maintenance of CDC

Parameter Setting - Uncertain Parameters

Belief reliability analysis of cloud data center
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Definition and connotation of BR

Definition（Belief reliability）

Let a system state variable 𝜉 be an uncertain random variable, and Ξ be 

the feasible domain of the system state. Then the belief reliability is defined as 

the chance that the system state is within the feasible domain, i.e.,

𝑅𝐵 = 𝐶ℎ 𝜉 ∈ 𝛯

[1] Qingyuan Zhang, Rui Kang, Meilin Wen. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems, 2018. (Online)

• The state variable 𝜉 describe the system 

behavior (function or failure behavior), and 

the feasible domain Ξ is a reflection of 

failure criteria.

• 𝜉 and Ξ can be relevant to time 𝑡, thus the 

belief reliability is a function of 𝑡, called 

belief reliability function 𝑅𝐵 𝑡 .

Remark 1：𝝃 and 𝚵

• If the system is mainly affected by AU, 𝜉 will 

degenerate to a random variable, and the 

belief reliability becomes 𝑅𝐵
𝑃
= Pr 𝜉 ∈ 𝛯

• If the system is mainly affected by EU, 𝜉 will 

degenerate to an uncertain variable, and the 

belief reliability becomes 𝑅𝐵
𝑈
= ℳ 𝜉 ∈ 𝛯

Remark 2：Two special cases
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Definition and connotation of BR

Connotation 1: The state variable represents failure time

Example（Belief reliability based on failure time）

The system state variable can represent system failure time 𝑇 which describes 

system failure behaviors. Therefore, the system belief reliability at 𝑡 can be obtained 

by letting the feasible domain of 𝑇 to be Ξ = 𝑡,+∞ , i.e., 

𝑅𝐵 𝑡 = Ch 𝑇 > 𝑡 .

Two 

Special 

cases

If the system is mainly affected by AU, the failure time will be modeled as a 

random variable 𝑇 𝑃 , and we have 𝑅𝐵(𝑡) = 𝑅𝐵
𝑃
(𝑡) = Pr 𝑇 𝑃 > 𝑡 .

If the system is mainly affected by EU, the failure time will be modeled as an 

uncertain variable 𝑇 𝑈 , and we have 𝑅𝐵(𝑡) = 𝑅𝐵
𝑈
(𝑡) = ℳ 𝑇 𝑈 > 𝑡 .

[1] Qingyuan Zhang, Rui Kang, Meilin Wen. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems, 2018. (Online)
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Definition and connotation of BR

Connotation 2: The state variable represents performance margin

Example（Belief reliability based on performance margin）

The system state variable can represent the performance margin 𝑚 which 

describes system function behaviors. Let the feasible domain of 𝑚 be Ξ = (0, +∞), 

and the system belief reliability can be written as: 

𝑅𝐵 = Ch 𝑚 > 0 .

If we consider the degradation process of 𝑚, then the belief reliability function is

𝑅𝐵 𝑡 = Ch 𝑚 𝑡 > 0 .

𝑚 𝑡

Uncertain random 

process

𝑇 = 𝑡0 = inf 𝑡 ≥ 0|𝑚(𝑡) = 0 𝑅𝐵 𝑡 = Ch 𝑚(𝑡) > 0

= Ch 𝑡0 > 𝑡

= Ch 𝑇 > 𝑡
Failure time is just the first hitting 

time of uncertain random process

[1] Qingyuan Zhang, Rui Kang, Meilin Wen. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems, 2018. (Online)
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Definition and connotation of BR

Connotation 3: The state variable represents function level

Example（Belief reliability based on function level）

The system state variable can represent the function level 𝐺 which describes 

both system function and failure behaviors, then it can measure the reliability of 

multi-state systems. Assume the system has 𝑘 different function levels with a lowest 

acceptable level of 𝐺 = 𝑠. Let the feasible domain to be Ξ = 𝑠, 𝑠 + 1,⋯ , 𝑘 , then the 

system belief reliability is

𝑅𝐵 = 𝐶ℎ 𝐺 ∈ 𝑠, 𝑠 + 1,⋯ , 𝑘 .

Special 

case

If the system has only two function levels, namely, complete failure with 

𝐺 = 0 and perfectly function with 𝐺 = 1, then the belief reliability will be

𝑅𝐵 = 𝐶ℎ 𝐺 = 1 .

[1] Qingyuan Zhang, Rui Kang, Meilin Wen. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems, 2018. (Online)
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Belief reliability indexes

[1] Qingyuan Zhang, Rui Kang, Meilin Wen. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems, 2018. (Online)
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Some belief reliability indexes

Definition（Belief reliability distribution）

Assume that a system state variable 𝜉 is an uncertain random variable, then

the chance distribution of 𝜉, i.e.,

}𝛷(𝑥) = Ch{𝜉 ≤ 𝑥

is defined as the belief reliability distribution.

Belief reliability distribution

If the state variable represents the

system failure time, the BRD will be

the chance distribution of 𝑇 , denoted

as Φ(𝑡). It can degenerate to either

probability or uncertainty distribution.

If the state variable represents the

system performance margin, the RBD

will be the chance distribution of 𝑚 ,

denoted as Φ(𝑥). It can degenerate to

either probability or uncertainty

distribution.
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Belief reliable life

Definition（Belief reliable life）

Assume the system failure time 𝑇 is an uncertain random variable with a belief

reliability function 𝑅𝐵 𝑡 . Let 𝛼 be a real number from (0,1). The system belief

reliable life 𝑇(𝛼) is defined as

𝑇 𝛼 = sup 𝑡 𝑅𝐵 𝑡 ≥ 𝛼 .

𝛼

𝑇(𝛼) 𝑡

𝑅𝐵 𝑡

Some belief reliability indexes
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Mean time to failure (MTTF)

Definition（Mean time to failure）

Assume the system failure time 𝑇 is an uncertain random variable with a belief

reliability function 𝑅𝐵 𝑡 . The mean time to failure (MTTF) is defined as

MTTF = 𝐸[𝑇] = න
0

∞

Ch{𝑇 > 𝑡}𝑑𝑡 = න
0

∞

𝑅𝐵(𝑡)𝑑𝑡 .

Theorem

Let 𝑅𝐵 𝑡 be a continuous and strictly decreasing function with respect to 𝑡 at

which 0 < 𝑅𝐵 𝑡 < 𝑅𝐵 0 ≤ 1 and lim
𝑡→+∞

𝑅𝐵 𝑡 = 0. Then we have

MTTF = න
0

1

𝑇(𝛼)𝑑𝛼 .

Some belief reliability indexes
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Belief life variance (BLV)

Definition（Belief life variance）

Assume the system failure time 𝑇 is an uncertain random variable and the

mean time to failure is MTTF. The belief life variance (BLV) is defined as

BLV = 𝑉 𝑇 = 𝐸 𝑇 −𝑀𝑇𝑇𝐹 2 .

Theorem

Let the belief reliability function be 𝑅𝐵 𝑡 , then the BLV can be calculated by

𝐵𝐿𝑉 = න
0

∞

𝑅𝐵(MTTF + 𝑡) + 1 − 𝑅𝐵 MTTF − 𝑡 𝑑𝑡.

Some belief reliability indexes
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Belief reliability for 

uncertain systems
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Minimal cut set theorem

Consider a coherent uncertain system comprising 𝑛 independent 

components with belief reliabilities 𝑅𝐵,𝑖
𝑈

𝑡 , 𝑖 = 1,2, … , 𝑛. If the system 

contains 𝑚 minimal cut sets 𝐶1, 𝐶2, ⋯ , 𝐶𝑚, then the system belief 

reliability is

𝑅𝐵,𝑆(𝑡) = ሥ

1≤𝑖≤𝑚

ሧ

𝑗∈𝐶𝑖

𝑅𝐵,𝑗
𝑈

Minimal cut set theorem for uncertain system

• Uncertain system is a system only composed of uncertain components. 

Its belief reliability can be calculated using minimal cut set theorem

[1] Zhiguo Zeng, Rui Kang, Meilin Wen, Enrico Zio. Uncertainty theory as a basis for belief reliability. Information Sciences, 429: 26-36, 2018. 

Belief reliability for uncertain systems
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Some examples

[1] Zhiguo Zeng, Rui Kang, Meilin Wen, Enrico Zio. Uncertainty theory as a basis for belief reliability. Information Sciences, 429: 26-36, 2018. 

Belief reliability for uncertain systems

1 2 n…
An uncertain series system has 𝑛 minimal cut sets, i.e.,

𝐶1 = 1 , 𝐶2 = 2 ,⋯ , 𝐶𝑛 = 𝑛 . Then the belief reliability is

𝑅𝐵,𝑆 = min
1≤𝑖≤𝑛

max
𝑗∈𝐶𝑖

𝑅𝐵,𝑗 = min
1≤𝑖≤𝑛

𝑅𝐵,𝑖

1

2

n

…

An uncertain parallel system only has 1 minimal cut

sets, i.e., 𝐶1 = 1,2, …𝑛 . Then the belief reliability is

𝑅𝐵,𝑆 = max
1≤𝑖≤𝑛

𝑅𝐵,𝑖

1

2

n

… k/n

An uncertain k-out-of-n system has 𝐶𝑛
𝑛−𝑘+1 minimal cut

sets and each set contains 𝑛 − 𝑘 + 1 components arbitrary

chosen from the 𝑛 components. Assume 𝑅𝐵,1 ≥ 𝑅𝐵,2 ≥ ⋯ ≥
𝑅𝐵,𝑛, then belief reliability is

𝑅𝐵,𝑆 = 𝑅𝐵,𝑘
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Uncertain fault tree analysis

Algorithm: BR analysis based on fault tree

1. Do a depth-first-search for the logic gates in the fault tree

2. For each logic gate, calculate the belief reliability for its output event:

𝑅𝐵,𝑜𝑢𝑡 =

ሥ

1≤𝑖≤𝑛

𝑅𝐵,𝑖𝑛,𝑖 , for 𝑎𝑛 𝑂𝑅 𝑔𝑎𝑡𝑒

ሧ

1≤𝑖≤𝑛

𝑅𝐵,𝑖𝑛,𝑖 , for 𝑎𝑛 𝐴𝑁𝐷 𝑔𝑎𝑡𝑒

3. 𝑅𝐵,𝑆 ← 𝑅𝐵,𝑜𝑢𝑡,𝑇𝐸

4. Return 𝑅𝐵,𝑆

[1] Zhiguo Zeng, Rui Kang, Meilin Wen, Enrico Zio. Uncertainty theory as a basis for belief reliability. Information Sciences, 429: 26-36, 2018. 

Belief reliability for uncertain systems

• The belief reliability of uncertain system can be analyzed based on fault tree. 

The algorithm is an application of the minimal cut set theorem
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Belief reliability for uncertain systems
An example: BR analysis of the left leading edge flap of F-18

Flight control 

computer A

Flight control 

computer B

Hydraulic servo 

actuator A

Hydraulic servo 

actuator B

LLEF

RLEF

Left asymmetry 

control unit

Right asymmetry 

control unit

CH1

CH2

CH3

CH4

Fig. Schematic diagram of the F-18 left leading edge flap (LLEF)

[1] Zhiguo Zeng, Rui Kang, Meilin Wen, Enrico Zio. Uncertainty theory as a basis for belief reliability. Information Sciences, 429：
26-36, 2018. 



63

Belief reliability for uncertain systems
An example: BR analysis of the left leading edge flap of F-18

Fig. The fault tree of the F-18 LLEF

[1] Zhiguo Zeng, Rui Kang, Meilin Wen, Enrico Zio. Uncertainty theory as a basis for belief reliability. Information Sciences, 429：
26-36, 2018. 

1 - HSA-A fail
3 - LLEF fail
8 - FCC-A fail

2 - Left asymmetry control unit fail
4~7 - CH 1~4 fail
9 - FCC-B fail

The system belief reliability is：
𝑅𝐵,𝑆 = 𝑅𝐵,1 ∧ 𝑅𝐵,2 ∧ 𝑅𝐵,3 ∧

𝑅𝐵,5 ∧ 𝑅𝐵,8 ∨ 𝑅𝐵,6 ∧ 𝑅𝐵,9 ∧

(𝑅𝐵,4 ∨ 𝑅𝐵,5 ∨ 𝑅𝐵,6 ∨ 𝑅𝐵,7)
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Belief reliability analysis for 

uncertain random systems
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Simple and complex systems

Simple systems Complex systems

Random components

Uncertain components

Random subsystem

Uncertain subsystem
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Belief reliability formula for simple systems

Theorem (Simple system formula)

Assume an uncertain random system is simplified to be composed of a 

random subsystem with belief reliability 𝑅𝐵,𝑅
𝑃
(𝑡) and an uncertain subsystem with 

belief reliability 𝑅𝐵,𝑈
𝑈
(𝑡). If the two subsystems are connected in series, the system 

belief reliability will be 

𝑅𝐵,𝑆 𝑡 = 𝑅𝐵,𝑅
𝑃
(𝑡) ∙ 𝑅𝐵,𝑈

𝑈
(𝑡).

If the two subsystems are connected in parallel, the system belief reliability will be

𝑅𝐵,𝑆 𝑡 = 1 − 1 − 𝑅𝐵,𝑅
𝑃

𝑡 ⋅ 1 − 𝑅𝐵,𝑈
𝑈

𝑡 .
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Belief reliability formula for simple systems

Some examples

1 m···

Series system Parallel series system

1 n···
1

m

···

1

n

···

𝑅𝐵,𝑅
𝑃
(𝑡) 𝑅𝐵,𝑈

𝑈
(𝑡)

𝑅𝐵,𝑅
𝑃
(𝑡) 𝑅𝐵,𝑈

𝑈
(𝑡)
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Belief reliability formula for simple systems

Some examples

Parallel system Series parallel system

𝑅𝐵,𝑅
𝑃
(𝑡)

𝑅𝐵,𝑈
𝑈
(𝑡)

1

m

···
1

n

···
1 m···

1 n···

𝑅𝐵,𝑅
𝑃
(𝑡)

𝑅𝐵,𝑈
𝑈
(𝑡)
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Belief reliability formula for complex systems

Theorem (Complex system formula, Wen & Kang, 2016)

Assume an uncertain random system is a Boolean system. The system has a structure function 𝑓

and contains random components with belief reliabilities 𝑅𝐵,𝑖
𝑃

𝑡 , 𝑖 = 1,2,⋯ ,𝑚 and uncertain components 

with belief reliabilities 𝑅𝐵,𝑗
𝑈

𝑡 , 𝑗 = 1,2,⋯ , 𝑛. Then the belief reliability of the system is

where 

R B ; S ( t ) =
X

( y 1 ; ¢ ¢ ¢ ; y m ) 2 f 0 ; 1 g m

Ã
mY

i = 1

¹ i ( y i ; t )

!

¢ Z ( y 1 ; y 2 ; ¢ ¢ ¢ ; y m ; t ) ;

R B ; S ( t ) =
X

( y 1 ; ¢ ¢ ¢ ; y m ) 2 f 0 ; 1 g m

Ã
mY

i = 1

¹ i ( y i ; t )

!

¢ Z ( y 1 ; y 2 ; ¢ ¢ ¢ ; y m ; t ) ;

Z ( y 1 ; y 2 ; ¢ ¢ ¢ ; y m ; t )

=

8
><

>:

s u p
f ( y 1 ; ¢ ¢ ¢ ; y m ; z 1 ; ¢ ¢ ¢ ; z n ( t ) ) = 1

m i n
1 · j · n

º j ( z j ; t ) ; i f s u p
f ( y 1 ; ¢ ¢ ¢ ; y m ; z 1 ; ¢ ¢ ¢ ; z n ) = 1

m i n
1 · j · n

º j ( z j ; t ) < 0 : 5 ;

1 ¡ s u p
f ( y 1 ; ¢ ¢ ¢ ; y m ; z 1 ; ¢ ¢ ¢ ; z n ) = 0

m i n
1 · j · n

º j ( z j ; t ) ; i f s u p
f ( y 1 ; ¢ ¢ ¢ ; y m ; z 1 ; ¢ ¢ ¢ ; z n ) = 1

m i n
1 · j · n

º j ( z j ; t ) ¸ 0 : 5 ;

ºj(zj;t) =

(
R
(U )
B ;i(t); ifzj = 1;

1 ¡ R
(U )
B ;i(t); ifzj = 0;

(j = 1;2;¢¢¢;n):
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A numerical case study

4

3

5
7

6
1 2

No.
Components 

type

Failure time 

distribution

1,3,4,5 Random )𝐸𝑥𝑝(𝜆 = 10−3ℎ−1

2 Uncertain )𝐿(500ℎ, 3000ℎ

6,7 Uncertain )𝐿(700ℎ, 2700ℎ

Table. Failure time distribution of components

Figure. System belief reliability 
function
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Belief reliability analysis for 

uncertain random components
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Performance margin model

Model 

uncertainty

Parameter 

uncertainty

The model may not precisely

describe the function behavior,

thus we need to add an

uncertain random variable to

quantify epistemic uncertainty.

Parameters in the model may be

uncertain because of inherent

variability and the uncertainty of

real working conditions. Thus they

are modeled as uncertain random

variables.

)𝑚 = 𝑔(𝑥1(𝜂1), 𝑥2(𝜂2), ⋯ , 𝑥𝑛(𝜂𝑛))𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝐸

)𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛

Basic ideas
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Performance margin model

Model 

uncertainty

Parameter 

uncertainty

The model may not precisely

describe the function behavior,

thus we need to add an

uncertain random variable to

quantify epistemic uncertainty.

Parameters in the model may be

uncertain because of inherent

variability and the uncertainty of

real working conditions. Thus they

are modeled as uncertain random

variables.

)𝑚 = 𝑔(𝑥1(𝜂1), 𝑥2(𝜂2), ⋯ , 𝑥𝑛(𝜂𝑛))𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝐸

)𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛

BR analysis considering parameter uncertainty
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BR analysis with parameter uncertainty in margin model

Performance margin

Definition（Performance margin）

Assume the critical performance parameter of a system or a component 

is 𝑝 , and its failure threshold is 𝑝𝑡ℎ, i.e., the system or the component will 

fail when 𝑝 > 𝑝𝑡ℎ. Then the performance margin is defined as：

𝑚 = 𝑝𝑡ℎ − 𝑝

Remark：

1. The system or the component will be working when 𝑚 > 0, and fail when 𝑚 < 0.

2. Considering the parameter uncertainty of performance parameter and its threshold, there 

will be several cases:

• 𝑝 and 𝑝𝑡ℎ are both random variables

• 𝑝 and 𝑝𝑡ℎ are both uncertain variables

• 𝑝 is a random variable and 𝑝𝑡ℎ is an uncertain variable

• 𝑝𝑡ℎ is a random variable and 𝑝 is an uncertain variable

[1] Qingyuan Zhang, Rui Kang, Meilin Wen, Tianpei Zu. A performance-margin-based belief reliability model considering parameter 

uncertainty. ESREL 2018.
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BR analysis with parameter uncertainty in margin model

Case 1: 𝑝 and 𝑝𝑡ℎ are both uncertain variables

Theorem 1

Suppose the system critical performance parameter 𝑝 and its 

associated failure threshold 𝑝𝑡ℎ are both uncertain variables, and their 

uncertainty distributions are 𝛷 𝑥 and 𝛹 𝑥 , respectively. Then the 

system belief reliability will be:

𝑅𝐵 = sup
𝑦∈ℜ

𝛷(𝑦) ∧ 1 − 𝛹(𝑦 .

A special case

If 𝑝𝑡ℎ is a constant, then the belief reliability will be：𝑅𝐵 = 𝛷 𝑝𝑡ℎ .

[1] Qingyuan Zhang, Rui Kang, Meilin Wen, Tianpei Zu. A performance-margin-based belief reliability model considering parameter 

uncertainty. ESREL 2018. 
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BR analysis with parameter uncertainty in margin model

Case 2: 𝑝 is random and 𝑝𝑡ℎ is uncertain

Theorem 2

Suppose the system critical performance parameter 𝑝 is a random variable with a 

probability distribution 𝛷 𝑥 , and the failure threshold 𝑝𝑡ℎ is an uncertain variable with 

an uncertainty distribution 𝛹 𝑥 . Then the system belief reliability is：

𝑅𝐵 = න
−∞

+∞

)1 − 𝛹 𝑦 𝑑𝛷(𝑦

Case 3: 𝑝 is uncertain and 𝑝𝑡ℎ is random

Theorem 3

Suppose the system critical performance parameter 𝑝 is an uncertain variable with 

an uncertainty distribution 𝛷 𝑥 , and the failure threshold 𝑝𝑡ℎ is a random variable with 

a probability distribution 𝛹 𝑥 . Then the system belief reliability is：

𝑅𝐵 = න
−∞

+∞

)𝛷 𝑦 𝑑𝛹(𝑦
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BR analysis with parameter uncertainty in margin model

Case study: Belief reliability analysis of a contact recording head

Input parameters Value or distribution Input parameters Value or distribution

Specific wear amounts 𝑘𝑠 2.55 × 10−20 ( Τ𝑚2 𝑁) Sliding width 𝐵 )0.015(𝑚

Running-in coefficient 𝑎 0.39 Contact area 𝐴 10−8(𝑚2)

Standard sliding distance 𝐿𝑠 )1000(𝑚 Head width 𝑏 10−4(𝑚)

Total sliding distance 𝐿 3.6 × 106(𝑚)

Contact load 𝑊 )𝑊~𝒩(𝜇 = 0.7, 𝜎 = 0.03)(𝑚𝑁

The uncertainty distribution of 𝑉：𝑉~𝒩(𝜇𝑉 = 1.8606, 𝜎𝑉 = 0.07974)(10−17𝑚3)
The uncertainty distribution of 𝑉𝑡ℎ is estimated to be：𝑉𝑡ℎ~ℒ(𝑎 = 2, 𝑏 = 2.5)(10−17𝑚3)

𝑅𝐵 = sup
𝑥∈ℜ

൯𝛷𝑉(𝑥) ∧ (1 − 𝛷𝑉𝑡ℎ(𝑥) = 0.97078
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Performance margin model

Model 

uncertainty

Parameter 

uncertainty

The model may not precisely

describe the function behavior,

thus we need to add an

uncertain random variable to

quantify epistemic uncertainty.

Parameters in the model may be

uncertain because of inherent

variability and the uncertainty of

real working conditions. Thus they

are modeled as uncertain random

variables.

)𝑚 = 𝑔(𝑥1(𝜂1), 𝑥2(𝜂2), ⋯ , 𝑥𝑛(𝜂𝑛))𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝐸

)𝑚 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛

BR analysis with both model and parameter uncertainties
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